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요약 - Abstract 

From the food we eat, the air we breathe, and the water we drink, climate change affects everything 

around us. Continual research on this topic has produced sophisticated climate simulation models that 

run in high- and ultra-high resolution and provide unprecedented details at the local level. However, an 

enormous computational cost is associated with running such models, limiting parameter calibration, 

and extensive experimentation. We employ two state-of-the-art deep learning approaches to upscale 

computationally cheaper low-resolution simulation data into high resolution. Our initial results suggest 

that deep learning models are a viable approach that outperforms existing baselines. 

1. Introduction 

 

Climate change is one of the most critical challenges that our 

planet is facing today. Understanding climate variability and 

change and predicting its impact on the environment as a 

whole has critical implications for policymaking and decisions 

aimed at mitigating the risks associated with climate change.  

  Research on climate change relies on computer models, 

generally referred to as the Earth System Models (ESMs). The 

state-of-the-art European climate model predicts at 1-km 

resolution, acting as a ‘digital twin’ to reality1 . Such fine 

resolution enables observations of weather events and climate 

change in the upcoming weeks at an unprecedented scale. 

Yet, such models bring an immediate challenge in terms of 

computation power, as even with powerful computing 

facilities like a supercomputer, high-resolution simulations are 

prohibitively resource-intensive to run. This inhibition further 

proves to be a roadblock when many experiments are required 

for analysis or when parameters need calibration.  

  This work utilizes deep learning techniques to upscale 

lower-resolution ESM simulation data to high-resolution. The 

low-resolution simulations have a low space and time 

complexity and require far fewer resources than the high-

resolution counterpart. This upscaling task can be formed as 

the super-resolution problem2. The results presented in this 

work suggest that deep learning models are a viable approach 

that outperforms existing baselines for upscaling the low-

resolution climate simulation data into high resolution. 

  The potential of this approach is promising, as it offers a 

                                                           
1 Europe builds ‘digital twin’ of Earth to hone climate forecasts (science.org) 

 

solution to move past the computational bottlenecks to better 

tune and experiment with the ESMs and further improve our 

understanding of the climate effects. We can better anticipate 

future climate events by utilizing the low-resolution 

predictions over longitudinal time scales and their application 

over the areas-of-interest via super-resolution techniques. 

Further, not only the long-term climate projections, but this 

approach could also be beneficial in making high-resolution 

short-term forecasts, especially in regions with sparse 

observational data. 

 

2. Methods 

We aim to upscale two climate features available in our 

dataset: temperature and precipitation. As climate features 

vary widely by altitude, we use geopotential information along 

with temperature and precipitation to make a 3-channel 

climate data (similar to RGB channels in image data). We 

denote a single low-resolution climate data as 𝑥𝐿𝑅. Our task 

is then to estimate high-resolution climate data 𝑥𝐻𝑅 given 𝑥𝐿𝑅. 

For data with C channels, we describe 𝑥𝐿𝑅 by a real-valued 

tensor of size W × H × C and 𝑥𝐻𝑅 by W’×H’×C respectively. 

We adopt the computer-vision deep learning approaches 

called super-resolution Convolutional Neural Network (SR-

CNN) (𝑓 ) [1] to predict high-resolution data, i.e., 𝑥𝐻𝑅  = 

𝑓(𝑥𝐿𝑅). We employ two backbone networks described below. 

 

2.1. SR-Resnet 

 

This backbone is based on the Resnet block architecture 

2Advances and challenges in super-resolution (ucsc.edu) 
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(Figure 13) and has been used in 

other super-resolution problems in 

computer vision. SR-Resnet 

introduces the concept of residual 

blocks and skip-connections to 

mitigate gradient vanishing by 

modeling the identity mapping that 

better represents convolutional 

kernels [2].  

The objective of this model, called the pixel-wise MSE loss, is 

defined as follows:  

 

 𝐋𝐦𝐬𝐞 =  
𝟏

𝐖′𝐇′
∑ ∑ (𝐱𝐢,𝐣

𝐇𝐑   −  𝐟(𝐱𝐢,𝐣
𝐋𝐑))2𝐇′

𝐣=𝟏  𝐖′

𝐢=𝟏  

 

2.2. RCAN 

 
Figure 2:  RCAN structure (ref: [3]) 

There are different types of features in the climate data: low-

frequency features that change gradually over the space 

(general features) and high-frequency features that change 

rapidly (detailed features). LR (low resolution) images have an 

abundance of low-frequency features, which can be learned 

quickly by the deep learning models. However, typical CNN-

based methods like SR-Resnet treat channel-wise features 

equally, performing otherwise dispensable computations for 

low-frequency features. This limits the capacity of the deep 

networks and makes it hard to improve the super-resolution 

performance by making the network deeper. 

Typical SR methods lack discriminative learning ability 

across feature channels because the inter-channel 

interdependencies are ignored. Applying these methods to the 

climate data set will restrict the performance since three 

channels represent three interdependent geometrical and 

climatic variables. Therefore, we employ RCAN, a specially 

designed SR-CNN approach with multiple skip-connections 

to bypass low-frequency features, and a channel attention 

network to capture interdependencies among channels 

(Figure 2) [3]. The objective of this model, called the pixel-

wise MAE loss, is written as follows:  

 

  𝐋𝐦𝐚𝐞 =  
𝟏

𝐖′𝐇′
∑ ∑ |𝐱𝐢,𝐣

𝐇𝐑   −  𝐟(𝐱𝐢,𝐣
𝐋𝐑)|𝐇′

𝐣=𝟏  𝐖′

𝐢=𝟏  

 

 

3. Experiments 

 

3.1. Dataset 

 

* Climate data: The climate data used in this study is obtained 

from a fully coupled ultra-high resolution (~25km) simulation 

                                                           
3 Deep Residual Learning for Image Recognition 
4 CESM Models | CESM1.2 Series Public Release (ucar.edu) 

using the Community Earth System Model version 1.2.2 4. The 

model is run with present-day conditions for 140 model years 

and the last 20 years of the simulation data are used for this 

work. This is to ensure that the model attained equilibrium with 

the present-day conditions. We make use of the following 

three channels: (1) Channel 1 is on Surface Temperature (TS), 

the most fundamental driver of local weather patterns; (2)  

Channel 2 is on Precipitation (PRECT), which is a nonlinear 

variable with large societal impacts; and (3) Channel 3 

contains the Surface Geopotential (PHIS), a height 

measurement of the surface above the mean sea level. 

 

* High Resolution (HR) data: The high-resolution simulation5 

is obtained from the output of a large climate simulation 

model6. The values are obtained by discretizing and solving 

the physical equations on a 25km grid. 

 

* Low Resolution (LR) data: The low-resolution data is 

obtained by linearly interpolating the climate model output into 

a coarser resolution (~100km) grid. This work uses HR data 

as the ground truth to train the super-resolution of LR input 

data. Data is split into training and testing sets. 

 

3.2. Training details 

We trained the model with SRResnet and RCAN for 50 epochs, 

using Adam optimizer. For SRResnet, we use the mean 

squared error (MSE) loss, while for RCAN we use mean 

absolute error (MAE) loss. Model performance is evaluated on 

the testing set. 

 

4. Results 

The root-mean-squared (RMS) error is reported in Table 1. 

We can see that RCAN and SRResnet both significantly 

outperform traditional approximations such as linear 

interpolation or bicubic interpolation, which are two methods 

often used as baselines in super-resolution tasks. RCAN 

outperforms SR-Resnet, especially in channels 1 (i.e., 

upscaling surface temperature). The skip connection structure 

of RCAN may be more appropriate in propagating the low-

frequency well so that its very deep structure still improves the 

performance. Although the geopotential channel (channel 3) 

is constant and solely used to add extra information for our 

main climate channels (temperature and precipitation), RCAN 

shows superior upscaling result in this channel (RMS 14.451), 

compared to SR-Resnet (RMS 208.308). This indicates that 

RCAN excels in capturing interdependencies among channels.   

 

Table 1.  Evaluation of the super-resolution results for each 

channel based on the RMS error values. Channel 1 is the 

surface temperature and Channel 2 is the precipitation 

 Linear Bicubic SR-Resnet RCAN 

Channel 1 0.904 0.901 0.619 0.294 

Channel 2 

(x10−8
) 

3.850 3.998 2.359 2.355 

5 Tropical cyclone response to anthropogenic warming as simulated by a mesoscale-resolving global 

coupled earth system model (eartharxiv.org) 
6 https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2014MS000363  

Figure 1: Residual block 

architecture 3 
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A visual outcome example is shown in Figure 1. The figure 

shows a precipitation output that is upscaled from a low-

resolution input. We could see that although the interpolation-

based methods (linear, cubic) make the output smoother and 

less pixelated, they miss out on important details in the HR 

data, leading to a high RMS error. On the other hand, SR-

Resnet and RCAN are able to retrieve many of these crucial 

details, resulting in a lower RMS error. 

 

5. Conclusion: 

By experimenting on state-of-the-art deep learning 

approaches on super-resolution tasks, we found that these 

models effectively convert low-resolution simulation data into 

high resolution. Deep-learning-based methods outperform 

the currently deployed baselines (interpolation) by a large 

margin. Using these methods could reduce the cost of climate 

simulations in both space and time complexity without 

sacrificing spatial resolution. This has a big potential not only 

in Earth System Model (ESM) but in many other 

computationally intensive simulations 
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Figure 3: An example of super-resolution results on precipitation. Both deep-learning-based super-resolution results (RCAN and SR-
Resnet) and traditional interpolation results (linear and bicubic) are presented. The LR input and the HR ground truth are also shown 
for comparison. A zoomed-in part from the image is shown for a clearer demonstration. 

2021년 한국소프트웨어종합학술대회 논문집

1466


	Aiding the Earth System Models with Super Resolution Deep Learning

